Annica M. Black-Schaffer, Alexander V. Balatsky
We discuss the appearance of odd-frequency spin-triplet s-wave superconductivity, first proposed by Berezinskii [{\it JETP} {\bf 20}, 287 (1974)], on the surface of a topological insulator proximity coupled to a conventional spin-singlet s-wave superconductor. Using both analytical and numerical methods we show that this disorder robust odd-frequency state is present whenever there is an in-surface gradient in the proximity induced gap, including superconductor-normal state (SN) junctions. The time-independent order parameter for the odd-frequency superconductor is proportional to the in-surface gap gradient. The induced odd-frequency component does not produce any low-energy states.
View original:
http://arxiv.org/abs/1208.4315
No comments:
Post a Comment