Antonio Di Lorenzo, José Carlos Egues
A measurement consists in coupling a system to a probe and reading the output of the probe to gather information about the system. The weaker the coupling, the smaller the back-action on the system, but also the less information conveyed. If the system undergoes a second measurement, the statistics of the first output can be conditioned on the value of the second one. This procedure is known as postselection. A postselected weak measurement of an observable can give a large average output of the probe when the postselected state is nearly orthogonal to the initial state of the system. This large value is an interference effect in the readout of the probe, which is initially in a coherent superposition of readout states (also known as pointer states). Usually, the weak interaction between system and probe is considered instantaneous, so that the dynamics of the probe can be neglected. However, for a weak measurement in solid-state devices, an interaction of finite duration is likely needed. Here, we show how this finite duration generates a contribution of the dynamical phase to the readout statistics. Furthermore, we derive interpolation formulas that are able to describe the statistics of the weak measurement for the whole range of pre- and postselected states. Phase-space averages appear in the expansion, suggesting an interpretation in terms of non-positive probabilities. Decoherence in the probe is also accounted for and it is pointed out the existence of a regime of intermediate coupling strength in which coherent oscillations can be observed in the probability of the readout.
View original:
http://arxiv.org/abs/1211.2485
No comments:
Post a Comment