Huan Yang, Bing Shen, Zhenyu Wang, Lei Shan, Cong Ren, Hai-Hu Wen
The vortex states on optimally doped Ba0.6K0.4Fe2As2 and underdoped
Ba0.77K0.23Fe2As2 single crystals are imaged by magnetic force microscopy at
various magnetic fields below 100 Oe. Local triangular vortex clusters are
observed in optimally doped samples. The vortices are more ordered than those
in Ba(Fe{1-x}Co{x})2As2, and the calculated pinning force per unit length is
about 1 order of magnitude weaker than that in optimally Co-doped 122 at the
same magnetic field, indicating that the Co doping at the Fe sites induces
stronger pinning. The proportion of six-neighbored vortices to the total amount
increases quickly with increasing magnetic field, and the estimated value
reaches 100% at several tesla. Vortex chains are also found in some local
regions, which enhance the pinning force as well as the critical current
density. Lines of vortex chains are observed in underdoped samples, and they
may have originated from the strong pinning near the twin boundaries arising
from the structural transition.
View original:
http://arxiv.org/abs/1112.2578
No comments:
Post a Comment