M. Q. Kuang, S. Y. Wu, Z. H. Zhang, B. T. Song
The 63Cu Knight shifts and g factors for the normal state of YBa2Cu3O7 in
tetragonal phase are theoretically studied in a uniform way from the high
(fourth-) order perturbation formulas of these parameters for a 3d9 ion under
tetragonally elongated octahedra. The calculations are quantitatively
correlated with the local structure of the Cu2+(2) site in YBa2Cu3O7. The
theoretical results show good agreement with the observed values, and the
improvements are achieved by adopting fewer adjustable parameters as compared
to the previous works. It is found that the significant anisotropy of the
Knight shifts is mainly attributed to the anisotropy of the g factors due to
the orbital interactions.
View original:
http://arxiv.org/abs/1202.4598
No comments:
Post a Comment