Tuesday, June 5, 2012

1206.0400 (Yafis Barlas et al.)

Higgs Bosons in D-wave Superconductors    [PDF]

Yafis Barlas, C. M. Varma
The concept of "broken symmetry", that the symmetry of the vacuum may be lower than the Hamiltonian of a quantum theory, plays an important role in modern physics. A manifestation of this phenomena is the Higgs boson in particle physics whose long awaited discovery is imminent. An equivalent mode in superconductors is implicit in the early theories of their collective fluctuations. Spurred by some mysterious experimental results, the theory of the oscillation of the amplitude of superconductivity order parameter, which is the equivalent to the Higgs modes in s-wave superconductors and its identification in the experiments, was explicitly provided. It was also shown that a necessary condition for this to occur is the emergent Lorentz invariance in the superconducting state while the metallic state and the region just below $T_c$ is manifestly non-Lorentz invariant. Here we show that d-wave superconductors, such as the high temperature Cuprate superconductors, should have a rich assortment of Higgs bosons, each in a different irreducible representation of the point-group symmetries of the lattice. We also show that these modes have a characteristic singular spectral structure which can be discovered in Raman scattering experiments.
View original: http://arxiv.org/abs/1206.0400

No comments:

Post a Comment