Soshi Iimura, Satoru Matuishi, Hikaru Sato, Taku Hanna, Yoshinori Muraba, Sung Wng Kim, Jung Eun Kim, Masaki Takata, Hideo Hosono
Iron arsenide superconductors based on the material LaFeAsO1-xFx are characterized by a two-dimensional Fermi surface (FS) consisting of hole and electron pockets yielding structural and antiferromagnetic transitions at x = 0. Electron doping by substituting O2- with F- suppresses these transitions and gives rise to superconductivity with a maximum Tc = 26 K at x = 0.1. However, the over-doped region cannot be accessed due to the poor solubility of F- above x = 0.2. Here we overcome this problem by doping LaFeAsO with hydrogen. We report the phase diagram of LaFeAsO1-xHx (x < 0.53) and, in addition to the conventional superconducting dome seen in LaFeAsO1-xFx, we find a second dome in the range 0.21 < x < 0.53, with a maximum Tc of 36 K at x = 0.3. Density functional theory calculations reveal that the three Fe 3d bands (xy, yz, zx) become degenerate at x = 0.36, whereas the FS nesting is weakened monotonically with x. These results imply that the band degeneracy has an important role to induce high Tc.
View original:
http://arxiv.org/abs/1207.0583
No comments:
Post a Comment