V. B. Zabolotnyy, D. V. Evtushinsky, A. A. Kordyuk, T. K. Kim, E. Carleschi, B. P. Doyle, R. Fittipaldi, M. Cuoco, A. Vecchione, S. V. Borisenko
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is applied to determine the momentum and orbital dependent effective masses and velocities of the electron quasiparticles close to the Fermi level. We demonstrate that the model can provide, among the various computable physical quantities, a very good agreement with the specific heat coefficient and the plasma frequency. Its use is underlined as a realistic input in the analysis of the possible electronic mechanisms related to the superconducting state of Sr2RuO4.
View original:
http://arxiv.org/abs/1212.3994
No comments:
Post a Comment