P. M. R. Brydon, Carsten Timm, Andreas P. Schnyder
We propose the existence of a substantial charge current parallel to the interface between a noncentrosymmetric superconductor and a metallic ferromagnet. Our analysis focuses upon two complementary orbital-angular-momentum pairing states of the superconductor, exemplifying topologically nontrivial states which are gapped and gapless in the bulk, respectively. Utilizing a quasiclassical scattering theory, we derive an expression for the interface current in terms of Andreev reflection coefficients. Performing a systematic study of the current, we find stark qualitative differences between the gapped and gapless superconductors, which reflect the very different underlying topological properties. For the fully gapped superconductor, there is a sharp drop in the zero-temperature current as the system is tuned from a topologically nontrivial to a trivial phase. We explain this in terms of the sudden disappearance of the contribution to the current from the subgap edge states at the topological transition. The current in the gapless superconductor is characterized by a dramatic enhancement at low temperatures, and exhibits a singular dependence on the exchange-field strength in the ferromagnetic metal at zero temperature. This is caused by the energy shift of the strongly spin-polarized nondegenerate zero-energy flat bands due to their coupling to the exchange field. We argue that the interface current provides a novel test of the topology of the superconductor, and discuss prospects for the experimental verification of our predictions.
View original:
http://arxiv.org/abs/1302.3714
No comments:
Post a Comment