Wednesday, February 20, 2013

1302.4663 (Baleegh Abdo et al.)

Directional amplification with a Josephson circuit    [PDF]

Baleegh Abdo, Katrina Sliwa, Luigi Frunzio, Michel Devoret
Non-reciprocal devices, which have different transmission coefficients for propagating waves in opposite directions, are crucial components in many low noise quantum measurements. In most schemes, magneto-optical effects provide the necessary non-reciprocity. In contrast, the proof-of-principle device presented here, consists of two on-chip coupled Josephson parametric converters (JPCs), which achieves directionality by exploiting the non-reciprocal phase response of the JPC in the trans-gain mode. The non-reciprocity of the device is controlled in-situ by varying the amplitude and phase difference of two independent microwave pump tones feeding the system. At the desired working point and for a signal frequency of 8.453 GHz, the device achieves a forward power gain of 15 dB within a dynamical bandwidth of 9 MHz, a reverse gain of -6 dB and suppression of the reflected signal by 8 dB. We also find that the amplifier adds a noise equivalent to less than one and a half photons at the signal frequency (referred to the input). It can process up to 3 photons at the signal frequency per inverse dynamical bandwidth. With a directional amplifier operating along the principles of this device, qubit and readout preamplifier could be integrated on the same chip.
View original: http://arxiv.org/abs/1302.4663

No comments:

Post a Comment