L. Steffen, A. Fedorov, M. Oppliger, Y. Salathe, P. Kurpiers, M. Baur, G. Puebla-Hellmann, C. Eichler, A. Wallraff
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
View original:
http://arxiv.org/abs/1302.5621
No comments:
Post a Comment