Wednesday, April 3, 2013

1304.0639 (A. Barannik et al.)

Millimeter-wave surface impedance of optimally-doped Ba(Fe1-xCox)2As2
single crystals
   [PDF]

A. Barannik, N. T. Cherpak, M. A. Tanatar, S. Vitusevich, V. Skresanov, P. C. Canfield, R. Prozorov
Precision measurements of active and reactive components of in-plane microwave surface impedance were performed in single crystals of optimally-doped Fe-based superconductor Ba(Fe1-xCox)2As2 (x = 0.074, Tc = 22.8 K). Measurements in a millimeter wavelength range (Ka band, 35-40 GHz) were performed using whispering gallery mode excitations in the ultrahigh quality factor quasioptical sapphire disk resonator with YBa2Cu2O7 superconducting (Tc = 90 K) end plates. The temperature variation of the London penetration depth is best described by a power-law function, delta {\lambda}(T) is proportional to T with the exponent n, n = 2.8, in reasonable agreement with radio-frequency measurements on crystals of the same batch. This power-law dependence is characteristic of a nodeless superconducting gap in the extended s-wave pairing scenario with a strong pair-breaking scattering. The quasiparticle conductivity of the samples, {\sigma}1(T), gradually increases with the decrease of temperature, showing no peak below or at Tc, in notable contrast with the behavior found in the cuprates. The temperature-dependent quasiparticle scattering rate was analyzed in a two-fluid model, assuming the validity of the Drude description of conductivity and generalized expression for the scattering rate. This analysis allows us to estimate the range of the values of a residual surface resistance from 3 to 6 mOhm.
View original: http://arxiv.org/abs/1304.0639

No comments:

Post a Comment