M. J. Woolley, C. Lang, C. Eichler, A. Wallraff, A. Blais
Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, was recently demonstrated with \emph{microwave-frequency} photons by Lang \emph{et al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of \emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii) resonant fluorescent microwave fields from \emph{continuously-driven} circuit QED systems. The calculations include the effects of the finite bandwidth of the detection scheme. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Ref. \onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian} single photons, and very good agreement between the calculations and the experimental data was obtained.
View original:
http://arxiv.org/abs/1304.6068
No comments:
Post a Comment