Monday, July 1, 2013

1306.6868 (Q. Zhang et al.)

Anomalous metallic state and anisotropic multiband superconductivity in

Q. Zhang, D. Rhodes, B. Zeng, T. Besara, T. Siegrist, M. D. Johannes, L. Balicas
We report the discovery of superconductivity in Nb$_3$Pd$_{x}$Se$_7$ with a $x$-dependent superconducting transition-temperature as high as $T_c \simeq 2.1 $ K for $x \simeq0.7$ (middle point of the resistive transition). Needle-like single crystals display anisotropic upper-critical fields with an anisotropy $\gamma = H^{b}_{c2}/H^{a}_{c2}$ as large as 6 between fields applied along their needle axis (or $b-$axis) or along the $a-$axis. As for the Fe based superconductors $\gamma$ is temperature-dependent suggesting that Nb$_3$Pd$_{0.7}$Se$_7$ is a multi-band superconductor. This is supported by band structure calculations which reveal a Fermi surface composed of quasi-one-dimensional and quasi-two-dimensional sheets of hole character, as well as three-dimensional sheets of both hole- and electron-character. Remarkably, $H^{b}_{c2}$ is observed to saturate at $H^{b}_{c2}(T \rightarrow 0 \text{K}) \simeq 14.1$ T which is $4.26 \times H_p$ where $H_p$ is the Pauli-limiting field in the weak-coupling regime. The synthesis procedure yields additional crystals belonging to the Nb$_2$Pd$_{x}$Se$_5$ phase which also becomes superconducting when the fraction of Pd is varied. For both phases we find that superconductivity condenses out of an anomalous metallic state, i.e. displaying $\partial \rho/ \partial T < 0$ above $T_c$ similarly to what is observed in the pseudogap-phase of the underdoped cuprates. An anomalous metallic state, low-dimensionality, multi-band character, extremely high and anisotropic $H_{c2}$s, are all ingredients for unconventional superconductivity.
View original:

No comments:

Post a Comment