F. Giazotto, M. J. Martinez-Perez
The Josephson effect represents perhaps the prototype of macroscopic phase coherence and is at the basis of the most widespread interferometer, i.e., the superconducting quantum interference device (SQUID). Yet, in analogy to electric interference, Maki and Griffin predicted in 1965 that thermal current flowing through a temperature-biased Josephson tunnel junction is a stationary periodic function of the quantum phase difference between the superconductors. The interplay between quasiparticles and Cooper pairs condensate is at the origin of such phase-dependent heat current, and is unique to Josephson junctions. In this scenario, a temperature-biased SQUID would allow heat currents to interfere thus implementing the thermal version of the electric Josephson interferometer. The dissipative character of heat flux makes this coherent phenomenon not less extraordinary than its electric (non-dissipative) counterpart. Albeit weird, this striking effect has never been demonstrated so far. Here we report the first experimental realization of a heat interferometer. We investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the system is found to be phase dependent, in agreement with the original prediction. With our design the Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at 235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable insight into thermal transport in Josephson junctions, our results represent a significant step toward phase-coherent mastering of heat in solid-state nanocircuits, and pave the way to the design of novel-concept coherent caloritronic devices.
View original:
http://arxiv.org/abs/1205.3353
No comments:
Post a Comment