Friday, March 15, 2013

1303.3382 (Sultan Demirdis et al.)

Disorder, critical currents, and vortex pinning energies in isovalently
substituted BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$
   [PDF]

Sultan Demirdis, Yanina Fasano, Shigeru Kasahara, Takahito Terashima, Takasada Shibauchi, Yuji Matsuda, Marcin Konczykowski, H. Pastoriza, Cornelis Jacominus Van Der Beek
We present a comprehensive overview of vortex pinning in single crystals of the isovalently substituted iron-based superconductor BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, a material that qualifies as an archetypical clean superconductor, containing only sparse strong point-like pins [in the sense of C.J. van der Beek {\em et al.}, Phys. Rev. B {\bf 66}, 024523 (2002)]. Widely varying critical current values for nominally similar compositions show that flux pinning is of extrinsic origin. Vortex configurations, imaged using the Bitter decoration method, show less density fluctuations than those previously observed in charge-doped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals. Analysis reveals that the pinning force and -energy distributions depend on the P-content $x$. However, they are always much narrower than in Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$, a result that is attributed to the weaker temperature dependence of the superfluid density on approaching $T_{c}$ in BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$. Critical current density measurements and pinning force distributions independently yield a mean distance between effective pinning centers $\bar{\mathcal L} \sim 90$ nm, increasing with increasing P-content $x$. This evolution can be understood as being the consequence of the P-dependence of the London penetration depth. Further salient features are a wide vortex free "Meissner belt", observed at the edge of overdoped crystals, and characteristic chain-like vortex arrangements, observed at all levels of P-substitution.
View original: http://arxiv.org/abs/1303.3382

No comments:

Post a Comment