Monday, July 15, 2013

1307.3499 (Shunichiro Kittaka et al.)

Multiband superconductivity with unexpected deficiency of nodal
quasiparticles in CeCu2Si2

Shunichiro Kittaka, Yuya Aoki, Yasuyuki Shimura, Toshiro Sakakibara, Silvia Seiro, Christoph Geibel, Frank Steglich, Hiroaki Ikeda, Kazushige Machida
Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. Here, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.
View original:

No comments:

Post a Comment