Friday, June 1, 2012

1205.6833 (Francisco Carlos Serbena et al.)

Depth-Sensing Indentation on REBa2Cu3O(7-δ) Single Crystals
obtained from Xenotime Mineral
   [PDF]

Francisco Carlos Serbena, Carlos Eugênio Foerster, Alcione Roberto Jurelo, Alexandre Mikowski, Pedro Rodrigues Júnior, Célia Regina Carubelli, Carlos Maurício Lepienski
A natural mixture of heavy rare earths oxides extracted from xenotime mineral have been used to prepare large single crystals of high-temperature REBa2Cu3O(7-\delta) superconductor grown using the CuO-BaO self-flux method. Its mechanical properties along the ab-plane were characterized using instrumented indentation. Hardness and elastic modulus were obtained by the Oliver and Pharr method and corresponds to 7.4 \pm 0.2 GPa and in range 135-175 GPa at small depths, respectively. Increasing the load promotes the nucleation of lateral cracks that causes a decrease in hardness and the measured elastic modulus by instrumented indentation at higher loads. The indentation fracture toughness was estimated by measuring the radial crack length from cube-corner indentations at various loads and was 0.8 \pm 0.2 MPa.m1/2. The observed slip systems of REBa2Cu3O(7-\delta) single crystals were [100](001) and [010](001), the same as for YBa2Cu3O(7-\delta) single crystals. The initial stages of deformation and fracture in the indentation process were investigated. The hardness and elastic modulus were not strongly modified by the crystallographic orientation in the ab-plane. This was interpreted in terms of the resolved shear stresses in the active slip systems. Evidence of cracking along the {100} and {110} planes on the ab-plane was observed. As a conclusion, the mechanical properties of REBa2Cu3O(7-\delta) single crystals prepared from xenotime are equivalent to those of YBa2Cu3O(7-\delta) single crystals produced by conventional rare earths oxides.
View original: http://arxiv.org/abs/1205.6833

No comments:

Post a Comment