Yu. M. Shukrinov, M. Hamdipour, M. R. Kolahchi, A. E. Botha, M. Suzuki
Chaotic features of systems of coupled Josephson junctions are studied. Manifestation of chaos in the temporal dependence of the electric charge, related to a parametric resonance, is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. The number of junctions in the stack strongly influences the fine structure in the current voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency over a range of conditions and parameters. General features of the system are analyzed by means of a linearized equation and the criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
View original:
http://arxiv.org/abs/1205.6900
No comments:
Post a Comment