S. Sanna, P. Carretta, R. De Renzi, G. Prando, P. Bonfà, M. Mazzani, G. Lamura, T. Shiroka, Y. Kobayashi, M. Sato
The appearance of static magnetism, nanoscopically coexisting with superconductivity, is shown to be a general feature of optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) superconductor (Ln - lanthanide ion) upon isovalent substitution of Fe by Ru. The magnetic ordering temperature T_N and the magnitude of the internal field display a dome-like dependence on x, peaked around x=1/4, with higher T_N values for those materials characterized by a larger z cell coordinate of As. Remarkably, the latter are also those with the highest superconducting transition temperature (T_c) for x=0. The reduction of T_c(x) is found to be significant in the x region of the phase diagram where the static magnetism develops. Upon increasing the Ru content superconductivity eventually disappears, but only at x=0.6.
View original:
http://arxiv.org/abs/1304.3301
No comments:
Post a Comment